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Abstract
We present an analytically solvable random graph model in which the
connections between the nodes can evolve in time, adiabatically slowly
compared to the dynamics of the nodes. We apply the formalism to finite
connectivity attractor neural network (Hopfield) models and show that due to
the minimization of the frustration effects the retrieval region of the phase
diagram can be significantly enlarged. Moreover, the fraction of misaligned
spins is reduced by this effect, and is smaller than that in the infinite connectivity
regime. The main cause of this difference is found to be the non-zero fraction
of sites with vanishing local field when the connectivity is finite.

PACS numbers: 75.10.Nr, 05.20.−y, 64.60.Cn

1. Introduction

Random graphs play an important role in a wide range of scientific disciplines. The topological
properties of graphs offer, in the language of nodes and edges, a simple yet powerful
representation of many different complex systems. For instance in biophysics, simple models
of random graphs have been used to predict the function of a chemical component (a node or a
‘spin’ on the graph), given information about how different chemicals interact with one another
(graph connectivity) and their individual functionality within the cell (spin orientation). In
complex systems such as financial markets, one tries to understand the underlying laws and
critical parameter values relating to economic recession or success, given a certain number of
connections between traders and their individual decisions. Examples of such complex systems
are in abundance, ranging from the aforementioned to ecological and linguistic networks (for
recent reviews on the subject see [1, 2]). These systems share one common feature: the sparse
connectivity between the nodes. Every member of the population is connected on average to
only a small fraction of all other members; yet a collective behaviour is observed.
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Under this unifying framework, random graphs stand as an interesting entity per se. From
a statistical mechanical point of view such systems differ fundamentally from fully connected
ones, especially in the parameter regime of finite connectivity. In the latter case, even at the
level of replica symmetry, one finds that an order-parameter function is required to describe
equilibrium [3–6]. Several applications of analytically solvable models on finite connectivity
random graphs can be found for e.g. error-correcting codes [7, 8], cryptography [9, 10],
optimization problems [11, 12], spin glasses [13, 14] and neural networks [15–17].

Physical systems however hardly ever maintain a static network architecture: the structure
of Web links changes continuously over time, as does the connectivity between traders in stock
markets, or the proteinic interactions through the evolutionary process; dynamically evolving
graphs form the majority of complex systems in nature. Studying such systems from an
analytic viewpoint poses an important theoretical challenge, since very little is known about
the dynamics of disordered systems with finite connectivity. In this paper, we solve a simple
model of a spin system on a random graph in which the network architecture can evolve in time,
although on timescales adiabatically slow compared to the dynamics of the spins. Thus, spins
are always at equilibrium with respect to the dynamics of the connections. This important
class of models which can be solved exactly has been first studied for fully-connected systems
and Hopfield models [18–24], and in a slightly modified version for a diluted neural network in
[25], whereas, curiously, the extension of these ideas to spin systems evolving on a hierarchy
of timescales reproduces the Parisi full replica symmetry breaking scheme [26].

Here we extend these ideas to finite-connectivity systems and, in particular, apply our
formalism to Hopfield models. We show that the retrieval region of the phase diagram becomes
significantly enlarged, and in fact, any finite degree of mobility of the graph can lead to a recall
of a condensed pattern at any finite value of the storage ratio. To get a better understanding
of this effect, we also compute the fraction of misaligned spins and the fraction of sites with
vanishing local fields as functions of the ratio of the characteristic temperatures of the two
dynamic processes. In the limit of extreme dilution our expressions reproduce the results
of [27].

2. Model definitions

The present model is an extension of the one presented in [27] where geometry was of
adaptive nature. There, one could make important analytic simplifications owing to the choice
of ‘extreme dilution’ scaling whereby each node in the graph was connected on average to
a vanishing fraction of other nodes although this fraction still contained an infinite number
of nodes. Here, we extend the formalism of [27] to consider the more realistic (albeit
analytically more involved) scenario in which for every node there is a finite average number
of connections, prescribed to a fixed number c. Thus, although rare loops are still present.

To be precise, our model describes a graph of i = 1, . . . , N nodes associated with N
(fast) neuron variables σ = (σ1, . . . , σN) with σi ∈ {−1, 1}. For every pair of neurons (i, j)

we consider the connectivity variables c = {cij } with cji = cij and cii = 0, which describe
whether a connection between neurons σi and σj is present (cij = 1) (cij = 0). We take
neuron variables to evolve according to a Glauber dynamics and at equilibrium their energy is
described by

Hf(σ, c) = −
∑
i<j

cij

c

p∑
µ=1

ξ
µ

i ξ
µ

j σiσj . (1)

The (quenched) variables {ξµ} ∈ {−1, 1}N with µ = 1, . . . , p describe p binary patterns
which have been imposed as attractors of the dynamics (stored Hopfield memories). The value
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of the pattern interactions
∑

µξ
µ

i ξ
µ

j remains unchanged throughout the dynamics. Neuron
variables equilibrate with respect to this Hamiltonian at temperature 1/β and are described by
the partition function

Zf(c) =
∑
{σ}

e−βHf(σ,c). (2)

Within the timescale in which neurons evolve to their equilibrium state, the connectivity
variables cij are effectively quenched. On larger timescales though, these also evolve
dynamically (according to some Glauber prescription and preserving detailed balance) with
the total Hamiltonian

Hs(c) = − 1

β
log Zf(c) +

1

β̃
log

(
N

c

)∑
i<j

cij . (3)

By this construction, energetically favourable configurations of the connectivity matrix c are
taken to be those that minimize the free energy of the neuron (fast) variables. The chemical
potential in (3), similar to [27], drives the average number of connections per neuron towards
c. Sparse connectivity then requires taking the limit c/N → 0 while our choice of finite
connectivity scaling corresponds to c ∼ O(1).

The variables c, in turn, equilibrate at an inverse temperature β̃ with a total partition
function given by

Zs =
∑
{c}

e−β̃Hs(c) =
∑
{c}

[Zf(c)]β̃/β e− log( N
c
)
∑

i<j cij . (4)

This partition sum effectively contains n = β̃/β replicated copies of the fast system, producing
a replica theory with nonvanishing but, generally, noninteger replica-dimension. Hence, by
definition, a large replica dimension n corresponds to low temperatures T̃ (or, equivalently,
low energies) of the slow system relative to that of the fast one. The formation of a particular
graph configuration is then dominated by the Hamiltonian (3) rather than the thermal noise
T̃ . The total construction of equations (1)–(4) therefore rearranges the geometry of the graph
into optimized configurations c such that the retrieval performance of pattern recall can be
potentially enhanced (due to the minimization of frustrated bonds).

At total equilibrium, we will be interested in the evaluation of the (slow) free energy

f = − lim
N→∞

1

β̃N
log Zs (5)

which generates expressions for the system’s macroscopic observables.

3. Calculation of the RS free energy

To evaluate the partition function (4), first the trace over the connectivity variables is taken.
This results in

Zs =
∑

σ1···σn

∏
i<j

[
1 +

c

N
e

β

c
ξi ·ξj σi ·σj

]
(6)

where we introduced the notation σ = (σ 1, . . . , σ n) with σ · σ′ = ∑
α σασ ′α and

ξi · ξj = ∑p

µ=1 ξ
µ

i ξ
µ

j as usual. The methodology required to proceed further from the above
equation depends on the scaling regime one considers. For systems with extreme dilution
where c → ∞ (while c/N → 0) [27], one can expand the above exponential and retain only
the lowest two moments, which for N → ∞, describe the system’s thermodynamics fully.
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In contrast, for any finite c moments of order higher than 2 do not vanish. One is therefore
required to consider an order-parameter function.

At this stage, it turns out helpful to partition our graph into 2p sublattices [15, 28],
Iξ = {i|ξi = ξ} with sublattice-averages 〈F(ξ)〉ξ = ∑

ξ pξF(ξ), where pξ = |Iξ|/N . Then,
upon introducing into our equations the order-function

Pξ(σ) = 1

|Iξ|
∑
i∈Iξ

δσ,σi
(7)

we obtain the following extremization problem for (5):

f = Extr{Pξ(σ)}

{
− c

2β̃

〈〈∑
σσ′

Pξ(σ)Pξ′(σ′) e
β

c
ξ·ξ′σ·σ′

〉〉
ξξ′

+
1

β̃

〈
log

∑
σ

exp

[
c

〈∑
σ′

Pξ′(σ′) e
β

c
ξ·ξ′σ·σ′

〉
ξ′

]〉
ξ

}
(8)

The order-function Pξ(σ) follows from the self-consistent equation

Pξ(σ) =
exp

[
c
〈∑

σ′ Pξ′(σ′) e
β

c
ξ·ξ′σ·σ′ 〉

ξ′
]

〈∑
σ′′ exp

[
c
〈∑

σ′ Pξ′(σ′) e
β

c
ξ′′·ξ′σ′′·σ′ 〉

ξ′
]〉

ξ′′

(9)

3.1. Replica- and sublattice-symmetric assumptions

Our expressions (9), which describe the underlying order-function of our system, depend on
the unpleasant sublattice index ξ. Therefore, solving this system of 2p equations will become
increasingly difficult with the number of patterns p. However, if the system is in a state where
there is a finite overlap only with one pattern (say µ = 1), we expect that one can make a
‘condensed ansatz’, namely requiring the sublattice distribution of replicated spins to depend
only on the component of the sublattice vector ξ corresponding to the condensed pattern, i.e.,

Pξ(σ) = Pξ1(σ). (10)

Taking the traces over the non-condensed pattern components then reduces the order parameter
equations (9) to3

Pξ (σ) ∼ exp


 c

2

∑
τ

[
cosh

(
β

c
σ · τ

)]p−1 ∑
ξ ′

Pξ ′(τ ) e
β

c
ξ ′ξ(σ·τ )


 . (11)

By inspection of the RHS of (11), one concludes that the dependence on the remaining
sublattice ξ can only come in in the form Pξ (σ) = P(ξσ). Upon inserting this form into the
RHS of (11), it follows that the resulting equation is self-consistent, which it should be:

P(σ) = exp
{
c
∑

τ P(τ ) e
β

c
(σ · τ )

[
cosh

(
β

c
σ · τ )]p−1

}
∑

σ′ exp
{
c
∑

τ P(τ ) e
β

c
(σ′ · τ )

[
cosh

(
β

c
σ′ · τ

)]p−1} . (12)

This expression, devoid completely of pattern variables, allows for a significant reduction of
numerical costs.

3 From now on we will use the proportionality symbol ∼ to express distributions modulo their normalization constant.
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We will now proceed further with assuming replica-symmetry (RS), namely we require
that permutation of spins within different replica groups leaves the order function (12) invariant.
In general, this amounts to assuming that the order function acquires e.g. the form

P(σ) =
∫

dh W(h)
eβh

∑
α σα

[2 cosh(βh)]n
(13)

since the sum over replica groups acts in the desired permutation-invariant way. In our case,
where n can take any finite value, we find that for integer n values, significant simplifications
occur if we rewrite replica-symmetry as

P(σ) =
n∑

l=0

Q(2l − n)δ(2l−n),
∑

α σα (14)

for some density Q(x) which takes values only at a finite number of integer points and with
the normalization constraint 1 = ∑n

l=0

(
n

l

)
Q(2l − n). The special case of (14) can also serve

as a test for the accuracy of the more general expression (13).

3.2. Thermodynamic quantities for general n

Using the general-n RS assumption (13), we may convert the self-consistent equation (12)
into one for the effective field distribution W(h). To do so, first one expresses (8) in terms of
W(h), so that f = extrW(h)f [W(h)] with:

f [W(h)] = − c

2β̃

∫
dh dh′ W(h)W(h′)

〈
coshn

(
β

c
(p − 2ν)

)

×
[

1 + tanh(βh) tanh(βh′) tanh

(
β

c
(p − 2ν)

)]n〉
ν

+
1

β̃
log

∞∑
k=0

ck e−c

k!

〈
· · ·

〈[∏
l

coshn

(
β

c
(p − 2νl)

)]∫ [
k∏

l=1

dhl W(hl)

]

×
{ ∑

λ=±1

[
k∏

l=1

(
1 + λ tanh(βhl) tanh

(
β

c
(p − 2νl)

))]}n〉
ν1

· · ·
〉

νk

with the averages

〈F(ν)〉ν =
p−1∑
ν=0

(
1

2

)p−1 (
p − 1

ν

)
F(ν). (15)

Variation of the above now with respect to W(h) results in

W(h) ∼
∞∑

k=0

e−cck

k!

〈
· · ·

〈[
k∏

l=1

coshn

(
β

c
(p − 2νl)

)]∫ [
k∏

l=1

dhl W(hl)

]

×
[∑

λ=±1

∏
l

(
1 + λ tanh(βhl) tanh

(
β

c
(p − 2νl)

))]n

× δ

[
h − 1

β

∑
l

atanh

(
tanh(βhl) tanh

(
β

c
(p − 2νl)

))]〉
ν1

· · ·
〉

νk

. (16)

In the special limit n → 0 this expression recovers [5, 4, 15] as it should. Typical profiles of
W(h) are shown in figure 1.
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Figure 1. The distribution W(h) as obtained from equation (16) for n = 1
10 , c = 5, p = 7

and T = 0.05 (left panel, corresponding to a ferromagnetic phase) and T = 0.2 (right panel,
corresponding to a spin-glass phase).

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

T T

m,q m

Figure 2. First-order R→SG transitions. Left panel: the order parameters m (solid) and q (dashed)
for n = 0.1 and p/c = 8/5 using the general-n expressions (17) and (18). Right panel: the order
parameter m using the integer-n expressions (23) with n = 2, c = 5 and p = 1, 2, 3, 10 (from left
to right).

Using the ansatze (10) and (13), one can also express the (condensed) retrieval and overlap
order parameters in terms of W(h):

m =
〈
ξ
∑

σ

Pξ (σ)σ 1

〉
ξ

=
∫

dh W(h) tanh(βh) (17)

q =
〈∑

σ

Pξ (σ)σ 1σ 2

〉
ξ

=
∫

dh W(h) tanh2(βh). (18)

In figure 2 (left panel) we present numerical solutions of equations (17) and (18).
From equations (16)–(18) we can identify W(h) = δ(h) as the paramagnetic (P) solution.

Using bifurcation analysis as in e.g. [15], one can find possible second-order transitions from
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this state. Thus, making an expansion of (16) for small fields such that
∫

dh W(h)h� = O(ε�)

with 0 < ε � 1, we find that transitions to ferromagnetic (F: m, q 	= 0) and spin-glass regions
(SG: m = 0, q 	= 0) are respectively given by

1 = c

〈
coshn

(
β

c
(p − 2ν)

)
tanh

(
β

c
(p − 2ν)

)〉
ν

(19)

1 = c

〈
coshn

(
β

c
(p − 2ν)

)
tanh2

(
β

c
(p − 2ν)

)〉
ν

. (20)

In the limit n → 0, when the evolution of connectivity variables is dominated by the thermal
noise T̃ , the microscopic distribution of the cij is uniform, and the calculation is equivalent
to a replica theory with quenched randomness. In this limit the above transition lines then
reduce indeed to the ones found in [15]. However, one must also keep in mind here that for
increasing n, the phase diagram tends to be dominated by first-order transitions [29]. In that
case, fields can no longer be regarded as small close to the transition and a bifurcation analysis
is not possible. One must then resort to strictly numerical methods for evaluating directly all
observables of interest.

3.3. Thermodynamic quantities for integer n

We will now consider the special case where n is integer whereby replica symmetry implies
the order function P(σ) can only have discrete arguments. Introducing the corresponding RS
ansatz (14) and replacing the Kronecker δ-functions by their integral representations allows
us to rewrite the self-consistent equation for P(σ) (12) in terms of Q(�), namely

Q(2s − n) ∼ exp

{
c

〈
n∑

l=0

Q(2l − n)K(l, s, (p − 2ν))

〉
ν

}
(21)

with the constants (in a particular integral representation)

K(l, s, (p − 2ν)) =
[

2 cosh

[
β

c
(p − 2ν)

]]n s∑
j=0

n−s∑
k=0

(
s

j

)(
n − s

k

)
tanhj+k

[
β

c
(p − 2ν)

]

×
∫ 2π

0

dω

2π
cosn(ω) tanj+k(ω) cos

(
ω(2l − n) +

π

2
(3j + k)

)
. (22)

Equation (21) can be solved numerically by iteration. In this representation, and also using
the sublattice symmetric ansatz (10), we find that the (condensed) retrieval overlap order
parameter m = ∑

σ P(σ)σ 1 reads

m =
n∑

l=0

Q(2l − n)2n

∫ 2π

0

dω

2π
sin[(2l − n)ω] tan(ω) cosn(ω) (23)

whereas the spin glass order parameter q = ∑
σ P(σ)σ 1σ 2 is

q =
n∑

l=0

Q(2l − n)2n

∫ 2π

0

dω

2π
cos[(2l − n)ω] tan2(ω) cosn(ω). (24)

Finally, the free energy in this representation is
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0 1 2 3
0

0.5

1

1.5

2

α

T

R

P

SG

Figure 3. Phase diagram for n = 0.1 and c = 5 in the space of T and α = p/c. Solid and dashed
lines represent second- and first-order transitions respectively while only markers correspond to
physical points (where p is integer). Even small values of n lead to a significant enlargement of the
retrieval phase (cf the phase diagram of [15] where n → 0). For sufficiently small values of n the
P→R and P→SG transitions are second-order and the separating line is described from (19, 20).

f = − c

2β̃

〈
n∑

l,s=0

(
n

s

)
Q(2s − n)Q(2l − n)K(l, s, (p − 2ν))

〉
ν

+
1

β̃

n∑
l=0

(
n

l

)
Q(2l − n) log Q(2l − n). (25)

Numerical solutions of equation (23) are shown in figure 2 (right panel).

3.4. Phase diagrams

In figure 3 we present the phase diagram of our model for n = 0.1. It is drawn in the (α, T )

plane where α = p/c. Direct evaluation of the observables m and q (16)–(18) shows that
the P→R and P→SG transitions occur at the lines predicted by (19) and (20). Generally,
sufficiently small values of n lead to second-order P→R and P→SG transitions, as was also
the case for c → ∞ [27]. As expected, the transition R→SG is first-order and examples of m
along this transition are shown in figure 2. Of special interest is the significant enlargement
of the R phase for any n > 0. It physically implies that as soon as the connectivity variables
{cij } can be ‘mobile’, the graph rearranges itself such that, for sufficiently low T, pattern recall
can always be achieved. This effect is more apparent as the ratio n = β̃/β increases (see
figure 4): the range in the parameter space where recall can be achieved increases, while the
SG area shrinks. Numerical evaluation of equations (23) and (24) shows that for large values
of n (i.e. for n > 1) the P→R transition line becomes first-order above some value of the
storage capacity α, which depends on c. In figure 4 we have plotted phase diagrams for n = 2
and n = 3 for different values of the connectivity. Compared to the extremely diluted theory
c → ∞, we see that finite-connectivity leads to larger regions in parameter space where recall
is possible (to illustrate this we have included the corresponding c → ∞ line in the left figure
where n = 2). Physically, this can be understood on the basis of the number of connections
per spin: for a system with finite c, there are enough vacancies for the connectivity variables
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Figure 4. Phase diagrams for n = 2 (left) and n = 3 (right) in the space of T and α = p/c. The
transition lines have been derived by direct evaluation of the observables m (23) and q (24) and are
of first order except for very small α. (also see figure 2). Increasing the value of the parameter n
leads to a shrinking of the SG phase. This is an immediate result of the minimization of frustration
in the graph.

to optimize the energetic contributions. However, for c → ∞, the number of vacancies for
optimal configurations is less, creating an entropic countereffect.

4. The fraction of misaligned spins

Since our model aims to describe rearrangements of the connectivity matrix {cij } tailored to
lead to optimal performance of pattern recall, we expect on physical grounds that this will be,
in fact, a result of a minimization of the number of frustrated bonds in the system. To measure
this effect, let us introduce the joint distribution of spins and local fields

Pξ(σ, h) = 1

|Iξ|
∑
i∈Iξ

δσ,σi
δ


h −

∑
j

cij

c

∑
µ

ξ
µ

i ξ
µ

j σj


 . (26)

With (26) we can now define the fraction of misaligned spins

φ =
〈 ∫ 0

−∞
dhPξ(1, h) +

∫ ∞

0
dhPξ(−1, h)

〉
ξ

(27)

and the fraction of vanishing local fields

ψ =
〈 ∑

σ∈{−1,1}
Pξ(σ, 0)

〉
ξ

. (28)

The latter, in contrast with the c → ∞ regime, is expected not to vanish (see e.g. [30]), since
the distribution of local fields is a sum of delta peaks. In the limit c → ∞, this sum of delta
peaks is traded for a continuous distribution, with a vanishing measure for the fraction of fields
that are exactly zero. Expressions (27) and (28) in combination will allow us to get an idea
of the amount of frustration in our system. Note however that a small fraction of misaligned
spins does not necessarily imply a small amount of frustration: for a large number of patterns
the interactions

∑
µξ

µ

i ξ
µ

j have a large absolute value and therefore with a high probability
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spins prefer to align to their local field. In contrast, a vanishing number of frustrated bonds
does imply a vanishing φ. If variations in n induce variations in φ, we expect this to be due to
a change in the amount of frustration.

4.1. The joint distribution of spins and local fields

To evaluate the joint distribution of spins and local fields, we begin by inserting into the
partition function (4) appropriate delta functions to define the local fields in the system

1 =
∫

{dhi}
∏

i

δ

[
hi −

∑
k

cik

c
(ξi · ξk)σk

]
(29)

with {dhi} = ∏n
α=1 dhα

i . The delta function in the above expression introduces conjugate
local fields in our equations. Therefore, we are required to consider the more general object

Pξ(σ, h, ĥ) = 1

|Iξ|
∑
j∈Iξ

δσ,σj
δ[ĥ − ĥj ]δ[h − hj ] (30)

from which the joint distribution of spins and local fields follows simply by integrating out the
conjugate fields ĥ. Given (29) and (30), we can now take the trace over {cij } in (4) and arrive
at the free energy

f = Extr{P }


−c

2

〈∑
σσ′

∫
dh dh′ dĥ dĥ′Pξ(σ, h, ĥ)Pξ(σ, h, ĥ) e− i

c
(σ·ĥ′+σ′·ĥ)

〉
ξξ′

+

〈
log

∑
σ

∫
dh dĥ eih·ĥ+ β

2 h·σ+c〈∑σ′
∫

dh′dĥ′Pξ′ (σ,h,ĥ) e− i
c (σ · ĥ′+σ′ · ĥ)〉ξ′

〉
ξ


 (31)

where the extremization problem leads to the self-consistent equation for Pξ(σ, h, ĥ):

Pξ(σ, h, ĥ) ∼ exp


iĥ · h +

β

2
h · σ + c

〈∑
σ′

∫
dĥ′dh′Pξ′(ĥ′, h′, σ′) e− i

c
(ξ·ξ′)[ĥ·σ′+ĥ′·σ]

〉
ξ′


 .

(32)

Let us now expand the exponential in the above right-hand side and integrate over the conjugate
fields ĥ:

Pξ(σ, h) ≡
∫

dĥPξ(σ, h, ĥ)

∼ e
β

c
h·σ ∑

k�0

e−cck

k!

〈
· · ·

〈 ∑
τ 1···τ k

∫ [
k∏

l=1

dhl dĥlPξ′
l
(τ l , hl , ĥl)

]
e− i

c

∑
l ξ·ξ′

l ĥ
′
l ·τ l

× δ

[
h −

k∑
l=1

ξ · ξ′
l

c
τ l

]〉
ξ1

· · ·
〉

ξk

. (33)

Using now the identity
∫

dĥ dh e−ia·ĥPξ(σ, h, ĥ) = e
β

2 a·σ ∫ dĥ dhPξ(σ, h, ĥ), we can write

Pξ(σ, h) ∼ e
β

2 h·σ
∞∑

k=0

ck e−c

k!

〈
· · ·

〈[ ∑
τ 1···τ k

k∏
l=1

Pξ′
l
(τ l )

]
exp

{
β

2c

k∑
l=1

(ξ · ξ′
l )σ · τ l

}

× δ

[
h − 1

c

k∑
l=1

(ξ · ξ′
l )τ l

]〉
ξ1

· · ·
〉

ξk

(34)
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where Pξ(σ) is the order function we defined in (7). Equation (34) represents the joint
distribution of n spins and local fields. From here, we may find the single-replica joint
distribution (26) by integrating out n − 1 replicas. The result is

Pξ(σ, h) ∼
∞∑

k=0

ck e−c

k!

〈
. . .

〈[ ∑
τ 1···τ k

k∏
l=1

Pξ′
l
(τ l)

]
n∏

α=2

{
2 cosh

[
β

c

k∑
l=1

(ξ · ξ′
l )τ

α
l

]}

× exp

{
β

c

k∑
l=1

(ξ · ξ′
l )σ τ 1

l

}
δ

[
h − 1

c

k∑
l=1

(ξ · ξ′
l )τ

1
l

]〉
ξ′

1

. . .

〉
ξ′

k

. (35)

This expression depends only on the order function Pξ(σ). To proceed further one is now
required to substitute either the general-n replica- and sublattice-symmetric assumptions (13)
and (16), or the corresponding integer-n ones (14) and (21). For general n we find that tracing
over the spins {τ l} results in lengthy expressions of questionable practical value. For integer n
however, spins need not be necessarily traced: the fact that their dimensionality is prescribed to
the well-defined integer value n allows us to proceed further and rewrite (35) in a numerically
tractable form. Using the ansatz (10) in the RHS of (35) and the RS expression (14), we obtain

Pξ (σ, h) ∼
∞∑

k=0

e−cck

k!

〈〈〈
n∏

α=2

{
2 cosh

[
β

c

k∑
l=1

(p − 1 − 2νl + ξξ ′
l )τ

α
l

]}
e

β

c
σ
∑

l [p−1−2νl+ξξ ′]τ 1
l δ

×
[
h − 1

c

k∑
l=1

[p − 1 − 2νl + ξξ ′
l ]τ

1
l

]〉
ν1···νk

〉
τ 1···τ k;ξ ′

1···ξ ′
k

〉
ξ ′

1···ξ ′
k

(36)

with the abbreviated averages

〈F(ν)〉ν =
p−1∑
ν=0

(
1

2

)p−1 (
p − 1

ν

)
F(ν) (37)

〈F(τ )〉τ ;ξ =
∑

τ

n∑
s=0

Q(2s − n)δ∑
α ξτα,2s−nF(τ ) (38)

〈F(ξ)〉ξ =
∑

ξ

[
1

2
δξ,1 +

1

2
δξ,−1

]
F(ξ). (39)

Once the density Q(�) has been obtained from (21), one can evaluate the distribution (36) in
the spirit of population dynamics [13]: one considers a population of triplets {ν, τ , ξ}. One
then selects a number k from a Poisson distribution of mean c and chooses l = 1, . . . , k triplets
{νl, τ l , ξ

′
l } each according to the distributions (37)–(38). One then evaluates the location and

weight of the local field h and thus estimates the probability Pξ (σ, h) (with σ and ξ fixed and
modulo the normalization coefficient). This process is repeated until convergence.

4.2. Numerical results

In figure 5 we plot the fraction of misaligned spins (27) as a function of the (spin) temperature
T for c = 10 and α = 0.1, 0.5 and 1 respectively. As expected on physical grounds, we
see that larger values of n, i.e. lower temperatures T̃ (or, lower timescales, or lower energies
equivalently) associated with the slow wiring variables cij , alignment improves. This effect
is due to the ordering of the cij , reducing the amount of frustration. In all cases we compare
the results with those for c → ∞ (as derived in [27]). Clearly, also for finite fixed c, φ
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Figure 5. Fraction of misaligned spins φ (27) for α = 0.1, 0.5, 1 (from left to right). In all
figures c = 10 and results are compared to the extreme dilution limit c → ∞ (dotted lines), for
n = 1, 2, 3.

decreases as a function of α, which is in fact a result of the scaling choice of the interactions∑
µ ξ

µ

i ξ
µ

j

/
c. The expectation of their absolute value increases with p, as do the local fields,

resulting in a high probability of alignment. We find that finite connectivity values of φ are
always upper-bounded by those of c → ∞. For temperatures T sufficiently large, such that the
system is in a paramagnetic state, the noisy dynamics of the spins dominates on the evolution
of the graph and φ becomes independent of the ratio n.

The difference between finite and infinite connectivity, most clearly observed in the
paramagnetic regime (large T ), is found to be mainly due to a nonvanishing fraction ψ of
sites that have a zero local field (28). This means that there is no energetically favourable
orientation for the spins at such sites. To understand the origin of the difference between
finite-c and c → ∞, let us consider the quantity

φ̂ = φ + 1
2ψ (40)

which represents the fraction of frustrated sites to which half of the ‘indeterminate’ spins have
been added. This quantity is plotted in figure 6 for c = 14 and α = 0.5, and is compared to φ

in the limit of c → ∞ calculated in [27]. We see that the finite- and infinite-c plots become
almost identical apart from a small difference close to the R→P transition. This hints that, as
far as the fraction of misaligned spins is concerned, ψ is the main discriminator between the
two scaling regimes and that the choice of obtaining the c → ∞ fraction φ via (40) is quite
accurate.

For large c, the quantity ψ is expected to vanish. This is indeed supported by the results
of figure 7, where ψ is plotted as a function of c for T = 2, n = 2 and the memory loads
α = 0.1, α = 0.5 and α = 1 respectively. Clearly, for small values of c the quantity ψ

can be rather large indeed, especially in the paramagnetic phase. It is also clear that the
statistics for ψ differ in the case of an odd versus an even number of patterns p, which we have
plotted separately in the figures: for an odd number of patterns, there can be no zero-valued
interactions

∑
µξ

µ

i ξ
µ

j , whereas for even p this can be the case; hence the smaller values of
ψ for odd p. The magnitude of the difference in φ at T = 2 between finite connectivity and
infinite connectivity in figure 5 appears to display a slight nonmonotonicity in α at first sight,
but is consistent with the corresponding values for ψ in figure 7. Here the cases α = 0.1 and
α = 0.5 correspond to odd p, whereas for α = 1p is even.
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Figure 6. Fraction of misaligned spins plus half of the fraction of spins with zero local field (40)
for c = 14, α = 0.5, n = 1, 2, 3, as compared to the case c → ∞ (dotted lines). Differences
between the two graphs are confined to temperature values close to the phase boundary.
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Figure 7. Fraction of spins with zero field ψ (28) for α = 0.1, 0.5, 1 (from left to right). In all
figures T = 2 and n = 2. Distinction has been made between even p (circles) and odd p (squares).

5. Simulations

To perform simulation experiments, one needs to construct an explicit dynamical process for
the transition probabilities W [c′; c] between two graph configurations. To this end, one can
easily set up Glauber-type probabilities W [Fij c, c] that automatically obey detailed balance
and which are functions of the energetic difference Hs(Fij c)−Hs(c), with Fij being a ‘switch’
operator such that Fijf (cij ) = f (1 − cij ) and Fijf (ck�) = f (ck�) if (i, j) 	= (k, �). Explicit
expressions on such processes can be derived equivalently to [27]. The result is

W [Fij c; c] = 1

2

{
1 − tanh

[
(2cij − 1)

2
log

( c

N

)
− n

2
log

(〈
e− β

c

∑
µ ξ

µ

i ξ
µ

j (2cij −1)σiσj
〉)]}

. (41)

The angular brackets denote a thermal average over the distribution pf(σ) ∼ exp[−βHf(σ, c)]
while spins are in equilibrium at the timescale of the graph dynamics. Note that this transition
probability reduces to the one found in [27] for c → ∞.
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Figure 8. Theory versus simulations: We plot the fraction ψ of spins with zero local field for
α = 0.5, T = 2 and n = 2 (theory: squares, simulations: circles plus error bars). Simulations are
performed for a system of N = 200 spins using the Glauber dynamics (41).

The practical restrictions for ‘coupled’ types of simulations, where two nested dynamical
processes occur, are that the total equilibration time can in reality be extremely large. So, for
all practical purposes one is confined to small system sizes, which, unfortunately induce, in
turn, large finite-size effects. Therefore, one has to accept that experiments will always suffer
from a non-vanishing statistical error and can at most be satisfactory.

With these practical limitations in mind, we will resort to a comparison of our theory for
the fraction ψ of zero local fields in the paramagnetic regime for n = 2 and T = 2, and for
small c. In this way we exploit the fact that in the paramagnetic regime equilibration times are
relatively short. In figure 8 we have plotted ψ for the five first possible values of c at α = 0.5,
with T = 2 and n = 2. Even though the system size is still rather modest (we used N = 200),
the results clearly support the theory.

6. Conclusions

It is a relatively new insight that a wide range of physical complex systems (viewed as random
graphs) evolve towards specific structures and are, surprisingly, characterized by universal
features (e.g. scale-free degree distributions). Preferential attachment models describing
network growth, such as the Barabási–Albert algorithm [2], provide possible explanations
for the occurrence of certain network architectures. In the present paper we have presented
a simple solvable model describing evolving random graphs of a fixed number of nodes,
with finite connectivity, in which the analytic hurdles imposed by the explicit dynamics are
overcome by taking the adiabatic limit: we consider connectivities whose evolution is much
slower than that of nodes. This allows us to study directly thermodynamic properties of graphs
at equilibrium.

In particular, we have focused our attention on Hopfield neural network models on random
graphs. By a suitable choice of chemical potential, the average connectivity per neuron is
forced to a finite regime, as opposed to a previous study [27] in which it was infinite. The
resulting theory is, traditionally (see [18–24]), a finite dimensional replica theory, in which the
replica dimension represents the ratio of temperatures between the fast and the slow systems.
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The consequences of the finite connectivity regime, as compared to the regime of the
so-called extreme dilution, are drastic at the mathematical level, since a finite set of order
parameters is traded for an infinite dimensional order parameter function. The case of
integer replica dimension, however, is an exception to the latter statement, simplifying the
mathematics, so that observables can be calculated accurately. In this paper we have presented
phase diagrams and observables for both integer replica dimension and non-integer replica
dimension. For integer replica dimension, we were able to calculate the fraction of misaligned
spins, as well as the fraction of vanishing fields. The latter quantity, which vanishes in the case
of infinite connectivity, is the most important discriminator between the parameter regimes of
finite connectivity and extreme dilution. Qualitatively, the frustration effects are minimized
as the temperature of the slow system decreases, enhancing the retrieval state of a condensed
pattern. Moreover, for larger n, phase transition lines are mainly first order, and the retrieval
phase is dramatically enlarged in comparison with the case n = 0. For any nonzero n there
is no critical storage capacity beyond which retrieval is not possible. In other words, as
soon as the statistics for the graph realizations becomes nonuniform, the graph in principle
can organize itself in favour of the retrieval of a pattern, regardless of the number of patterns
present in the Hopfield interactions (note that this statement is in principle true for an arbitrarily
large but finite p, due to the scaling regime of finite connectivity). Our theoretical findings are
supported by simulation results, which, due to the difficulties of nested equilibrations, we have
restricted to a simple (paramagnetic) region in the phase diagram. All results obtained in this
paper are replica symmetric approximations. However, as in the case of infinite connectivity
[27], we expect replica symmetry breaking to occur only at sufficiently low values of n i.e.
below n = 1, and small values of T or large values of α.

Several extensions of this work are possible: in a similar fashion one may also consider
evolution models of random Poissonian graphs to e.g. scale-free ones. In the context of the
present paper this amounts to appropriate modifications of our chemical potential while the
remaining theory would remain largely the same.

Furthermore, one may investigate the local stability of non-condensed pattern retrieval
states once the cij are equilibrated in favour of one particular pattern, as was done in [27]. To
that end, one needs to overcome the problem of taking the replica limit n → 0 in only one of
two spin systems {σi} and {τ i}, described by a coupled order function Pξ(σ, τ ). So far, we
have not been able to solve this problem.
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